Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production

نویسندگان

  • Nadiele T M Melo
  • Kelly C L Mulder
  • André Moraes Nicola
  • Lucas S Carvalho
  • Gisele S Menino
  • Eduardo Mulinari
  • Nádia S Parachin
چکیده

Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris, a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris. To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella.

The new methanol-assimilating yeast species Komagataella phaffii Kurtzman sp. nov. (type strain NRRL Y-7556(T)=CBS 2612(T)) is described. Of the four known strains of this species, two were isolated from black oak trees in California, USA, one from an Emory oak in Arizona, USA, and one from an unidentified source in Mexico. The species forms hat-shaped ascospores in deliquescent asci and appear...

متن کامل

Centromeres of the Yeast Komagataella phaffii (Pichia pastoris) Have a Simple Inverted-Repeat Structure

Centromere organization has evolved dramatically in one clade of fungi, the Saccharomycotina. These yeasts have lost the ability to make normal eukaryotic heterochromatin with histone H3K9 methylation, which is a major component of pericentromeric regions in other eukaryotes. Following this loss, several different types of centromere emerged, including two types of sequence-defined ("point") ce...

متن کامل

Creation of Stable Heterothallic Strains of Komagataella phaffii Enables Dissection of Mating Gene Regulation

The methylotrophic yeast Komagataella phaffii (Pichia pastoris) is homothallic and has been reported to switch mating type by an ancient inversion mechanism. Two mating-type (MAT) loci include homologs of the MATa and MATα transcription factor genes, with the expression from one locus downregulated by telomere position effects. However, not much is known about mating gene regulation, since the ...

متن کامل

A novel spray-drying process to stabilize glycolate oxidase and catalase in Pichia pastoris and optimization of pyruvate production from lactate using the spray-dried biocatalyst

Pyruvate is a valuable chemical intermediate in the production of fine chemicals used by agrochemical, pharmaceutical, and food industries. Current technology for production of pyruvic acid is based on conversion from tartaric acid and results in environmentally incompatible byproducts. An enzymatic approach to making pyruvate was developed by cloning the glycolate oxidase (GO) gene from spinac...

متن کامل

Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker

BACKGROUND A commonly used approach to improve recombinant protein production is to increase the levels of expression by providing extra-copies of a heterologous gene. In Komagataella phaffii (Pichia pastoris) this is usually accomplished by transforming cells with an expression vector carrying a drug-resistance marker following a screening for multicopy clones on plates with increasingly highe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2018